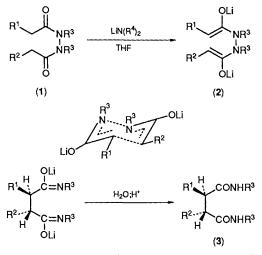
New Diastereoselective Method for Constructing a Carbon Chain by Conversion of *N,N*'-Dialkyl-*N,N*'-Diacylhydrazines to *threo*-1,2-Dicarboxylic Acid Derivatives

Igor V. Magedov* and Yuri I. Smushkevich

Mendeleev Chemico-Technological Institute, Miusskaya pl. 9, Moscow 125820, USSR

A diastereoselective method is described for constructing a carbon chain by conversion of N,N'-dialkyl-N,N'-diacylhydrazines (**1a**-**f**) to dialkyldiamides of *threo*-1,2-dicarboxylic acids (**3a**-**f**).

[3,3] Sigmatropic rearrangements of neutral molecules are extensively used in organic chemistry,¹ as are [3,3] sigmatropic rearrangements of anions, *e.g.* carboxylic acid monoenolates (Carrol and Ireland–Claisen reactions,² which are diastereoselective methods of constructing a carbon chain) and *N*-aryl- *N'*-acylhydrazine monenolates (Brunner's reaction,³ used to synthesize 2-oxy-indoles). However, the [3,3] sigmatropic rearrangements of dienolates have not been reported.


We have discovered a new diastereoselective reaction that allows one to convert N,N'-dialkyl-N,N'-diacyl-hydrazines into *threo*-1,2-dicarboxylic acid dialkyl diamides. This reaction proceeds as a [3,3] sigmatropic rearrangement *via* dienolate formation and leads to cleavage of the nitrogennitrogen bond yielding a new carbon-carbon bond.

Dienolates (2a-f) were generated from compounds (1a-f) by the action of strong bases such as lithium bis(trimethyl-

Table 1. Rearrangement of N, N'-dialkyl-N, N'-diacylhydrazines (1) to dialkyldiamides (3) of *threo*-1,2-dicarboxylic acid.^a

Compound	R↓	R ²	R ³	<i>Threo:</i> erythro mol. ratio ^b	Yield of (3)(%)
а	Ph	Ph	Me	7:3	70
b	Ph	Ph	Pri	1:0	87
c	1-Np ^e	Np	Me	1:0	75
d	PhCH ₂	$PhCH_2$	Me	1 : 0°	20
e	1-Np	Н	Me		67ª
f	1-Np	Me	Me	1:0	71 ^d

^a All new compounds have been fully characterized by IR, NMR, MS, and elemental analysis. ^b From NMR data. ^c With hexamethylphosphoric triamide as co-solvent. ^d Rearrangement occurs on heating at 66 °C. ^e 1-Np = 1-naphthyl.

Scheme 1. $R^4 = SiMe_3$ or Pr^i ; see Table 1 for other substituents.

silyl)amide or lithium di-isopropylamide.[†] The overall yields of the amides (**3a—f**), obtained following acidification are in

Table 1. The results of the rearrangement are the same irrespective of the base.

The diastereoselectivity of a [3,3] sigmatropic rearrangement is determined by two factors: the configuration of the enolates (**2a**—**f**) and the conformation of the transition state. It is known that the Z-configuration is more stable for amide enolates⁴ and [3,3] sigmatropic rearrangements proceed primarily through a 'chair' transition state.¹ These two factors are responsible for the diastereoselective pattern of the reaction.

Thus, we have developed a convenient preparative diastereoselective method to obtain *threo*-1,2-dicarboxylic acids derivatives.

Received, 26th February 1990; Com. 0/00843E

References

- 1 R. B. Woodward and R. Hoffman, 'The Conservation of Orbital Symmetry,' Academic Press, New York, 1970.
- 2 S. Blechert, Synthesis, 1989, 71; N. Petranani and M. Jonashira, ibid., 1982, 551; F. E. Ziegler, Chem. Rev., 1988, 88, 1423.
- 3 R. J. Sundberg, 'The Chemistry of Indoles,' Academic Press, New York, 1970.
- 4 C. H. Heathcock, C. T. Buse, W. A. Kleschick, M. C. Pirrung, I. E. Sohn, and J. Lampe, *J. Org. Chem.*, 1980, **45**, 1066; D. A. Evans, J. Bartoli, and T. L. Shih, *J. Am. Chem. Soc.*, 1981, **103**, 2127.

[†] In a typical experiment, the N, N'-dialkyl-N, N'-diacylhydrazine (1a—f) (2 mmol) was added under argon to LiN(SiMe₃)₂ (5 mmol) in tetrahydrofuran at -78 °C. The mixture was stirred for 20 min at the same temperature and then set aside for 60 min at 25 °C. 2 M HCl was added to pH 7. The precipitate was filtered off and recrystallised.